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PHASE TRANSITIONS IN NEUTRON STARSNORMAN K. GLENDENNINGNuclear Science Division andInstitute for Nuclear & Particle AstrophysicsLawrence Berkeley National LaboratoryBerkeley, California 94720USANeutron stars are the densest objects in the universe today in which matter withseveral phases in adiabatic equilibrium can be found. Various high-density phases,both geometric and constitutional are spatially spread out by the pressure gradientin the star. Boundaries between phases slowly move, appear, or disappear as thedensity pro�le of the star is changed by the centrifugal force due to spindown causedby the magnetic torque of a pulsar, or the spinup of an x-ray neutron star becauseof the torque applied by mass accreted from a companion star. Phase transitionsin turn produce their own imprint on the spin behavior through changes in themoment of inertia as one phase replaces another, in some cases on single stars, andin others on populations. These are the clues that we elucidate after �rst reviewinghigh-density phases.1. A Brief History of Neutron Stars� 1054 Chinese astronomer \observed the apparition of a guest star...its color an iridescent yellow".� 1933 Baade and Zwicky|binding energy of \closely packed neutrons"powers supernova.� 1939 Oppenheimer, Volko� and Tolman|neutron fermi gas.� 1967 Pacini predicted magnetic dipole radiation.� 1967 Hewish & Bell's serendipitous discovery of neutron starsproducing a radio pulse once every revolution from beamed radiationalong the magnetic axis which is �xed in the star. They are believedto be the direct product of core collapse a mature massive star andits the subsequent supernova.� 1974 Hulse and Taylor binary neutron star pair in close orbit.� 1984 Bacher's discovery of �rst Millisecond pulsar. They are believedto be very old supernova products that have been spun up by mass1
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2 accretion from a low-mass companion star.� 1992 Wolszczan & Frail, discovery of 3 planets around a neutron star.2. Gross Features of Neutron Stars� Surface gravity M=R of Black hole =0.5,Neutron star =0.2,Sun =10�6� Gravitational binding / Nuclear binding � 10� Radius = 10� 12km, Mass� 1:44M�� Spin periods from seconds to milliseconds� Neutron stars are degenerate objects (� << T ).� Stars are electrically neutral. (ZNet=A � (m=e)2 < 10�36)� Baryon number and charge are conserved.� Strangeness not conserved (beyond 10�10 seconds).� Millisecond pulsars have remarkably stable pulses:P = 1:55780644887275� 0:00000000000003 ms(measured for PSR 1937+21 on 29 Nov 1982 at 1903 UT)

Figure 1. There are two classes of pulsars. The great bulk of known ones are thecanonical pulsars with periods centered at about 0.7 seconds. The millisecond pulsarsare believed to be an evolutionarily di�erent class. They are harder to detect, and were�rst discovered in 1982.
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33. HyperonizationFree neutrons are unstable, but in a star the size and mass of a neutronstar, gravitational binding energy is about ten times greater than nuclearbinding so that neutrons are a stable component of dense stars. Whatabout protons? The repulsive Coulomb force is so much stronger than thegravitational, that the net electric charge on a star must be very small(Znet=(N + Z) < (m=e)2 � 10�36). We can say that it is charge neutral.Since mp +me > mn, neutrons are the preferred baryon species. However,being Fermions, with increasing density of neutron matter, the Fermi levelof neutrons will exceed the mass of proton and electron at some, not toohigh a density. Therefore, protons and electrons will also occupy neutronstar matter. Because strangeness is conserved only on a weak interactiontime-scale, this quantum number is not conserved in an equilibrium state.So with increasing density, the Pauli principle assures us that baryons ofmany species will be ingredients of dense neutral matter.1;2Generally, it su�ces to take the baryon octet into account together withelectrons and muons. In Figure 2 we see that the � is most strongly popu-lated in the center of a typical neutron star if quarks have not become de-con�ned at those densities. Notice that the lepton populations decrease asthe populations of negatively charged hyperons increase. This is in accordwith conservation of baryon number in the star. The number of electronsand muons are not by themselves conserved.The equation of state is softened in comparison with a neutron matterequation of state. The softening means that the Fermi pressure is reducedso that hyperon matter cannot support as large a mass against gravitationalcollapse than would be the case otherwise. The hyperon transition is secondorder; particle populations vary continuously with density in a uniformmedium. However, the densities reached in neutron star cores, 5 to 10times nuclear matter density, are in all likelihood too high for baryons toexist as separate entities|quarks are likely to become decon�ned at lowerdensity than that. This is likely to be a �rst order phase transition.4. First Order Transitions in StarsGenerally, physicists think of a phase transition such as from water to vaporas being typical of a �rst order transition. In the real world it is far fromtypical. Its characteristics are: if heated at constant pressure, the temper-ature of water and vapor will rise to 100 C and remain there until all thewater has been evaporated before the temperature of the steam rises. This
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Figure 2. Particle populations as a function of baryon density in dense matter, and asa function of radial coordinate in a neutron star.is true of substances having one independent component (like H2O). Thesituation can, and usually is much more interesting for substances with twoor more independent components, as I recognized a few years ago.3 Neu-tron stars are an example. The independent components are the conservedbaryon and electric charge. Until about 1990, all authors forced stellarmodels into the mold of single-component substances by imposing a con-dition of local charge neutrality and ignoring the discontinuity in electronchemical potential at the interface of two phases in equilibrium. In 1992 Irealized that all these models of phase transitions in nuclear matter|whichhas two independent conserved components, the total baryon charge andthe electric charge|were intrinsically incorrect.3 They cannot satisfy Gibbscriteria for phase equilibrium in complex systems. And I stressed that analtogether new set of phenomenon were introduced by solving the problemcorrectly. Indeed, a Coulomb crystalline region involving the two phases inequilibrium could form, an idea that had not previously come to light.34.1. Degrees of freedom and driving forcesTwo features can come into play in phase transition of complex substancesthat are absent in simple substances. The degree(s) of freedom can beseen in the following way. Imagine assembling a star in a pure phase (sayordinary nuclear matter) with B baryons and Q electric charges, eitherpositive, negative or zero. (Of course, more precisely, we consider a typicallocal inertial region.) The concentration is said to be c = Q=B. Nowconsider another local region deeper in the star and at higher pressure with
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5the same number of baryons and charges, but with conditions such thatpart of the volume is in the �rst phase and another part in the secondphase. Suppose the baryons and charges in the two phases are distributedsuch that concentrations in the two phases areQ1=B1 = c1 and Q2=B2 = c2 :The conservation laws are still satis�ed ifQ1 +Q2 = Q; B1 +B2 = B :Why might the concentrations in the two phases be di�erent from eachother and from the concentration in the other local volumes at di�erentpressure? Because the degree of freedom of redistributing the concentrationmay be exploited by internal forces of the substance so as to achieve a lowerfree energy. In a single-component substance there was no such degreeof freedom, and in an n-component substance there are n � 1 degrees offreedom. In deeper regions of the star, still di�erent concentrations may befavored in the two phases in equilibrium at these higher-pressure locations.So you see that the each phase in equilibrium with the other, may havecontinuously changing properties from one region of the star to another.(This is unlike the simple substance whose properties remain unchanged ineach equilibrium phase, until only one phase remains.)The key recognition is that conserved quantities (or independent com-ponents) of a substance are conserved globally, but need not be conservedlocally.3 Otherwise, Gibbs conditions for phase equilibrium cannot be sat-is�ed. Let us see how this is done.Gibbs condition for phase equilibrium in the case of two conserved quan-tities is p1(�n; �e; T ) = p2(�n; �e; T )We have introduced the neutron and electron chemical potentials bywhich baryon and electric charge conservation are to be enforced. Incontrast to the case of a simple substance, for which Gibbs condition|p1(�; T ) = p2(�; T )|can be solved for �, the phase equilibrium conditioncannot be satis�ed for substance of more than one independent compo-nent without additional conservation constraints. Clearly, local chargeconservation (q(r) � 0) must be abandoned in favor of global conserva-tion (R q(r)q(r) � 0), which is after all what is required by physics. For auniform distribution global neutrality reads,(1� �)q1(�n; �e; T ) + �q2(�n; �e; T ) = 0 ;
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Figure 3. Solid line: equation of state for neutron star matter with a kaon condensedphase. Regions of the normal nuclear matter phase, the mixed phase, and the pure kaoncondensed phase are marked. Notice that the pressure changes monotonically throughthe mixed phase. Dashed line: The Maxwell construction with the typical constantpressure region does not satisfy equality of the electron chemical potential in the twophases.where � = V2=V; V = V1 + V2. Given T and � we can solve for �nand�e.Thus the solutions are of the form�n = �n(�; T ); �e = �e(�; T ) :Because of the dependance on �, we learn that all properties of the phasesin equilibrium change with proportion, �, of the phases. This contrastswith simple (one component) substances. These properties are illustratedfor the pressure in Figure 3. Behavior of the pressure is illustrated for twocases: (1) a simple, and (2) a complex substance. In the latter case, thepressure is monotonic, as proven above. This is in marked contrast to thepressure plateau of the simple (one component) substance.4.2. Isospin symmetry energy as a driving forceA well known feature of nuclear systematics is the valley of beta stabilitywhich, aside from the Coulomb repulsion, endows nuclei with N = Z thegreatest binding among isotones (N +Z = const). Empirically, the form ofthe symmetry energy isEN�sym = ��[(N � Z)=(N + Z)]2 :Physically, this arises in about equal parts from the di�erence in energies
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7of neutron and proton Fermi energies and the coupling of the � meson tonucleon isospin current. Consider now a neutron star. While containingmany nucleon species, neutron star matter is still very isospin asymmetric|it sits high up from the valley oor of beta stability|and must do so becauseof the asymmetry imposed by the strength of the Coulomb force comparedto the gravitational.Let us examine sample volumes of matter at ever-deeper depth in astar until we arrive at a local inertial volume where the pressure is highenough that some of the quarks have become decon�ned; that both phasesare present in the local volume. According to what has been said above,the highly unfavorable isospin of the nuclear phase can lower its repulsiveasymmetry energy if some neutrons exchange one of their d quarks with au quark in the quark phase in equilibrium with it. In this way the nuclearmatter will become positively charged and the quark matter will carrya compensating negative charge, and the overall energy will be lowered.The degree to which the exchange will take place will vary according tothe proportion of the phases|clearly a region with a small proportion ofquark matter cannot as e�ectively relieve the isospin asymmetry of a large

Figure 4. Equation of state for matter in beta equilibrium for three hypothetical modelsof dense nuclear matter; (1): only neutrons and protons are present (n + p), (2): inaddition to neutrons and protons, hyperons (H) are also present (n + p + H), (3):Hybrid denotes the equation of state for which matter has a low density nuclear phase,an intermediate mixed phase, and a high-density quark phase. Discontinuities in slopesignal the transition between these phases.Figure 5. The particle populations are shown as a function of density as phases change.The low-density region, 0:3fm�3 �B , is pure charge-neutral nuclear matter; the mixednuclear and quark matter region lies in the density range 0:3 < �B < 1:2 fm�3, and purequark region lies above �B > 1:2 fm�3 .
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8proportion of neutron star matter of its excess isospin as can a volume ofthe star where the two phases are in more equal proportion. We see thisquantitatively in Figure 6 where the charge densities on hadronic and quarkmatter are shown as a function of proportion of the phases.

Figure 6. Charge densities on Hadronic and Quark matter as a function of proportion.Note that overall the mixture is neutral.Figure 7. Diameter (bottom curve) and spacing (top curve) of the geometrical phasesare shown as a function of position r in the star of 1:454M�. (see also Figure 8)
4.3. Geometrical phasesIn equilibrium, the isospin driving force tends to concentrate positive chargeon nuclear matter and compensating negative charge on quark matter. TheCoulomb force will tend to break up regions of like charge while the sur-face interface energy will resist this tendency. The same competition is inplay in the crust of the star where ionized atoms sit at lattice sites in anelectron sea. For the idealized geometries of spheres, rods, or sheets of therare phase immersed in the dominant one, and employing the Wigner-Seitzapproximation (in which each cell has zero total charge, and does not in-teract with other cells), closed form solutions exist for the diameter D, andspacing S of the Coulomb lattice. The Coulomb and surface energy fordrops, rods or slabs (d = 3; 2; 1) have the form:�C = Cd(�)D2 ; �S = Sd(�)=D ;
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9where Cd abd Sd are simple algebraic functions of �. The sum is minimizedby �S = 2�C . Hence, the diameter of the objects at the lattice sites isD = [Sd(�)=2Cd(�)]1=3 ;where their spacing is S = D=�1=d if the hadronic phase is the backgroundor S = D=(1� �)1=d if the quark phase is background. Figure 7 shows thecomputed diameter and spacing of the various geometric phases of quarkand hadronic matter as a function of radial coordinate in a hybrid neutronstar.

Figure 8. Pie sections showing geometric phases in two stars of di�erent mass4.4. Color-avor locked quark-matter phase (CFL)Rajagopal and Wilczek have argued that the Fermi surface of the quarkdecon�ned phase is unstable to correlations of quarks of opposite momen-tum and unlike avor and form BCS pairs4. They estimate a pairing gapof � � 100 MeV. The greatest energy bene�t is achieved if the Fermi sur-faces of all avors are equal in radius. This links color and avor by aninvariance to simultaneous rotations of color and avor. The approximateenergy density corresponding to the gap is���CFL � �C(kF �)2 � 50 � C MeV=fm3 ;where C is an unknown constant. This is another \driving force" as spokenof above in addition to the nuclear symmetry energy �sym. It acts, not to
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10restore isospin symmetry in nuclear matter, but color-avor symmetry inthe quark phase. Alford, Rajagopal, Reddy, and Wilczek have argued thatthe CFL phase, which is identically charge neutral and has this large pair-ing gap may preempt the possibility of phase equilibrium between con�nedhadronic matter and the quark phase; that any amount of quark matterwould go into the charge neutral CFL phase (with equal numbers of u, dand s quarks, irrespective of mass) and that the mixed phase spoken ofabove would be absent.5 That the nuclear symmetry driving force wouldbe overcome by the color-avor locking of the quark phase leaving the de-gree of freedom possessed by the two-component system unexploited. Thediscontinuity of the electron chemical potential in the two phases, hadronicand quark matter would be patched by a spherical interface separating acore of CFL phase in the star from the surrounding hadronic phase. Forthat conclusion to be true, a rather large surface interface coe�cient waschosen by dimensional arguments.However, my opinion is that nature will make a choice of surface inter-face properties between hadronic and quark matter such that the degree offreedom of exchanging charge can be exploited by the driving forces (heretwo in number as discussed below). This is usually the case. Physical sys-tems generally have their free energy lowered when a degree of freedom (asspoken of above) becomes available.With two possible phases of quark matter, the uniform uncorrelatedone discussed �rst, and the CFL phase as discussed by Rajagopal andWilczek, there is now a competition between the CFL pairing and thenuclear symmetry-energy densities, and these energy densities are weightedby the volume proportion � of quark matter in comparison with hadronicmatter in locally inertial regions of the star. That is to say, �CFL and �symare not directly in competition, but rather they are weighted by the relevantvolume proportions. It is not a question of \either, or" but \one, then theother".The magnitude of the nuclear symmetry energy density at a typicalphase transition density of � � 1=fm3 is�N�sym = �35[(N � Z)=(N + Z)]2 MeV=fm3 :To gain this energy a certain price is exacted from the disturbance of thesymmetry of the uniform quark matter phase in equilibrium with it; �Q�sym.As can be inferred from Figure 6, the price is small compared to the gain.On the other side, the energy gained by the quark matter entering theCFL phase was written above and is o�set by the energy not gained by thenuclear matter because the CFL preempts an improvement in its isospin
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11asymmetry. So we need to compare(1� �)�N�sym � � �Q�sym � [�surf(�) + �coul(�)]with � ���CFL � (1� �)�N�sym :The behavior of these two lines as a function of proportion of quark phase� in a local volume in the star is as follows:a The �rst expression for thenet gain in energy due to the formation of a mixed phase of nuclear anduniform quark matter monotonically decreases from its maximum value at� = 0 while the second expression, the net energy gain in forming the CFLphase monotonically increases from zero at � = 0. Therefore as a functionof � or equivalently depth in the star measured from the depth at which the�rst quarks become decon�ned, nuclear symmetry energy is the dominatingdriving force, while at some value of � in the range 0 < � < 1 the CFLpairing becomes the dominating driving force.In terms of Figure 8, several of the outermost geometric phases in whichquark matter occupies lattice sites in a background of nuclear matter areundisturbed. But the sequence of geometric phases is terminated beforethe series is complete, and the inner core is entirely in the CFL phase.In summary, when the interior density of a neutron star is su�cientlyhigh as to decon�ne quarks, a charge neutral color-avor locked phase withno electrons will form the inner core. This will be surrounded by one ormore shells of mixed phase of quark matter in a uniform phase in phaseequilibrium with con�ned hadronic matter, the two arranged in a Coulomblattice which di�ers in dimensionality from one shell to another. As seenin Figure 6, the density of electrons is very low to essentially vanishing,because overall charge neutrality can be achieved more economically amongthe conserved baryon charge carrying particles. Finally, All this will besurrounded by uniform charge neutral nuclear matter with varying particlecomposition according to depth (pressure), (cf. Figure 5.)5. Rotation and Phase TransitionsExcept for the �rst few seconds in the life of a neutron star, at which timethey radiate the vast bulk of their binding energy in the form of neutrinos,we think of them as rather static objects. However the spin evolution atmillisecond periods of rotation brings about centrifugally induced changesin the density pro�le of the star, and hence also in the thresholds andaThe behavior of the quantity in square brackets can be viewed in Figure 9.14 of reference[2, 2'nd ed.]
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12densities of various hyperons, dense phases such as kaon condensed phaseand inevitably quark matter. We shall assume that the central densityof the more massive millisecond pulsars|being centrifugally diluted|liesbelow the critical density for pure quark matter, while the central density ofcanonical pulsars, like the Crab, and more slowly rotating ones, lies above.We explore the consequences of such assumptions.Because of the di�erent compressibility of low and high-density phases,conversion from one phase to another as the phase boundary slowly moveswith changing stellar spin (Fig. 9) results in a considerable redistributionof mass (Fig. 10) and hence change in moment of inertia over time. Thetime scale is of the order of 107 to 109 yr. The behavior of the moment ofinertia while successive shells in the star are changing phase is analogousto the so-called backbending behavior of the moment of inertia of deformedrotating nuclei brought about by a change of phase from one in which thecoriolis force breaks nucleon spin pairing to one in which spins are paired.Compare Figs. 11 and 12.

Figure 9. Radial boundaries at various rotational frequencies separating various phases.The frequencies of two pulsars, the Crab and PSR 1937+21 are marked for reference.Figure 10. Mass pro�les as a function of equatorial radius of a star rotating at threedi�erent frequencies. At low frequency the star is very dense in its core, having a 4 kmcentral region of highly compressible pure quark matter. Inections at � � 220 and 950are the boundaries of the mixed phase.Elsewhere we have discussed the possible e�ect of a phase transitionon isolated millisecond radio pulsars.6 Here we discuss x-ray neutron starsthat have a low-mass non-degenerate companion. Beginning at a late stage
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13in the evolution of the companion it evolves toward its red-giant stage andmass overows the gravitational barrier between the donor and neutronstar. The neutron star is spun up by angular momentum conservation ofthe accreted matter. The heated surface of the neutron star and its rotationmay be detected by emitted x-rays.In either case|neutron star accretors or millisecond pulsars|the radialthresholds of particle types and phase boundaries will move|either out-ward or inward|depending on whether the star is being spun up or down.The critical density separating phases moves slowly so that the conversionfrom one phase to another occurs little by little at the moving boundary.In a rapidly rotating pulsar that is spinning down, the matter density ini-tially is centrifugally diluted, but the density rises above the critical phasetransition density as the star spins down. Relatively sti� nuclear matteris converted to highly compressible quark matter. The overlaying layer ofnuclear matter squeezes the quark matter causing the interior density torise, while the greater concentration of mass at the center acts further toconcentrate the mass of the star. Therefore, its moment of inertia decreasesover and above what would occur in an immutable rotating gravitating uidthat is spinning down. If this occurs, the moment of inertia as a function ofspin exhibits a backbend as in Figure 11. Such a phenomenon has been ob-served in nuclei, as illustreated in Figure 12.18;19;20 The opposite evolutionof the moment of inertia may occur in x-ray neutron stars that are spinningup when the spin change spans the critical region of phase transition.As a result of the backbend in moment of inertia, an isolated ms pulsarmay cease its spindown and actually spin up for a time, even though loosingangular momentum to radiation as was discussed in a previous work.6 Anx-ray neutron star with a companion may pause in its accretion drivenspinup until quark matter is driven out of the star, after which it willresume spinup. Spinup or spin down occurs very slowly, being controlledby the mass accretion rate or the magnitude of the magnetic dipole �eld,respectively. So, the spin anomaly that might be produced by a conversionof matter from one phase to another will endure for many millions of years.If it were eeting it would be unobservable. But enduring for a long epoch|if the phenomenon occurs at all|it has a good chance of being observed.A very interesting work by Spyrou and Stergioulas has recently ap-peared in the above connection.7 They perform a more accurate numericalcalculation for a rotating relativistic star, as compared to our perturbativesolution. They �nd that the backbend in our particular example occursvery close to, or at the maximum (non-rotating) star, but that it is generic
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14for stars that are conditionally stabilized by their spin. This is possibly thesituation for some or eventually all accretors.In fact, we expect a phase transition to leave a permanent imprint onthe distribution in spins of x-ray accretors. Because of the increase ofmoment of inertia during the epoch in which the quark core is driven outof a neutron star as it is spun up by mass accretion, spinup is|duringthis epoch|hindered. Therefore we expect the population of accretors tobe clustered in the spin-range corresponding to the expulsion of the quarkphase from the stellar core. Spin clustering was reported in the populationof x-ray neutron stars in binaries that were reported in data from the RossiX-ray Timing Explorer.8 However, later observations failed to con�rm this.

Figure 11. Development of moment of inertia of a model neutron star as a functionof angular velocity. The backbend in this case is similar to what is observed in somerotating nuclei. (Adapted from Ref. 6.)Figure 12. Backbending in the rotating Er nucleus and an number of others was dis-covered in the 1970s.6. CalculationThe theory and parameters used to describe our model neutron star are pre-cisely those used in previous publications. Its initial mass is M = 1:42M�,close to the mass limit. The con�ned hadronic phase is described by ageneralization of a relativistic nuclear �eld theory solved at the mean �eldlevel in which members of the baryon octet are coupled to scalar, vec-
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15tor and vector-isovector mesons.9;2 The parameters 6;10 of the nuclear La-grangian were chosen so that symmetric nuclear matter has the follow-ing properties: binding energy B=A = �16:3 MeV, saturation density� = 0:153 fm�3, compression modulus K = 300 MeV, symmetry en-ergy coe�cient asym = 32:5 MeV, nucleon e�ective mass at saturationm?sat = 0:7m. These together with the ratio of hyperon to nucleon cou-plings of the three mesons, x� = 0:6; x! = 0:653 = x� yield the correct �binding in nuclear matter.10Quark matter is treated in a version of the MIT bag model with thethree light avor quarks (mu = md = 0; ms = 150 MeV) as described. 11A value of the bag constant B1=4 = 180 MeV is employed.6 The transitionbetween these two phases of a medium with two independent conservedcharges (baryon and electric) has been described elsewhere.3 We use a sim-ple schematic model of accretion. 12;13;14 All details of our calculation canbe found elsewhere.15;16;177. ResultsThe spin evolution of accreting neutron stars as determined by the changingmoment of inertia and the evolution equation15 is shown in Fig. 13. Weassume that up to 0:4M� is accreted. Otherwise the maximum frequencyattained is less than shown. Three average accretion rates are assumed,_M�10 = 1, 10 and 100 (where _M�10 is in units of 10�10M�/y).We compute a frequency distribution of x-ray stars in low-mass binaries(LMXBs) from Fig. 13, for one accretion rate, by assuming that neutronstars begin their accretion evolution at the average rate of one per millionyears. A di�erent rate will only shift some neutron stars from one bin toan adjacent one. The donor masses in the binaries are believed to rangebetween 0:1 and 0:4M� and we assume a uniform distribution in this rangeand repeat the calculation shown in Fig. 13 at intervals of 0:1M�. Theresulting frequency distribution of x-ray neutron stars is shown in Fig. 14;it is striking. A spike in the distribution signals spinout of the quark mattercore as the neutron star spins up. This feature would be absent if therewere no phase transition in our model of the neutron star.The data in Fig. 14 is gathered from Tables 2{4 of the review articleof van der Klis concerning discoveries made with the Rossi X-ray TimingExplorer.8 However, later observations have failed to con�rm the originalreport.
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Figure 13. Evolution of spin frequencies of accreting neutron stars with (solid curves)and without (dashed curves) quark decon�nement if 0:4M� is accreted. The spin plateauaround 200 Hz signals the ongoing process of quark con�nement in the stellar centers.Spin equilibrium is eventually reached. (From Ref. 15.)Figure 14. Calculated spin distribution of the underlying population of x-ray neutronstars for one accretion rate (open histogram) is normalized to the number of observedobjects (18) at the peak. Data on neutron stars in low-mass X-ray binaries (shadedhistogram) is from Ref. 8. These results have not been observed in later observations,however. The spike in the calculated distribution corresponds to the spinout of the quarkmatter phase. Otherwise the spike would be absent. (From Ref. 15.)8. ConclusionWe �nd that if a clustering in rotation frequency of accreting x-ray neutronstars in low-mass binaries were discovered, it could be caused by the pro-gressive conversion of quark matter in the core to con�ned hadronic matter,paced by the slow spinup due to mass accretion. When conversion is com-pleted, normal accretion driven spinup resumes. To distinguish this conjec-ture from others, one would have to discover the inverse phenomenon|aspin anomaly near the same frequency in an isolated ms pulsar.6 If sucha discovery were made, and the apparent clustering of x-ray accretors iscon�rmed, we would have some degree of con�dence in the hypothesis thata dense matter phase, most plausibly quark matter, exists from birth in thecores of canonical neutron stars, is spun out if the star has a companionfrom which it accretes matter, and later, having consumed its companion,resumes life as a millisecond radio pulsar and spins down.
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